#### MECHANICS / ROTATIONAL MOTION

**UE1040101** 

## **ROTATIONAL MOTION WITH UNIFORM ACCELERATION**



### **EXPERIMENT** PROCEDURE:

- Plot the angle of rotation point by point as a function of time for a uniformly accelerated rotational motion.
- Confirm the proportionality between the angle of rotation and the square of the time.
- Determine the angular acceleration as a function of the torque and confirm agreement with Newton's equation of motion.
- Determine the angular acceleration as a function of the moment of inertia and confirm agreement with Newton's equation of motion.

# OBJECTIVE

Confirm Newton's equation of motion.

#### SUMMARY

Ouar

For a body that rotates about a fixed axis with uniform acceleration, the angle of rotation  $\varphi$  increases in proportion to the square of the time t. From this proportionality factor it is possible to calculate the angular acceleration  $\alpha$ , which in turn depends, according to Newton's equation of motion, on the accelerating torque (turning moment) and the moment of inertia of the rigid body.

#### **REQUIRED APPARATUS**

| ntity | Description                                  | Number  |    |
|-------|----------------------------------------------|---------|----|
| 1     | Rotating System on Air Bed (230 V, 50/60 Hz) | 1000782 | or |
|       | Rotating System on Air Bed (115 V, 50/60 Hz) | 1000781 |    |
| 1     | Laser Reflection Sensor                      | 1001034 |    |
| 1     | Digital Counter (230 V, 50/60 Hz)            | 1001033 | or |
|       | Digital Counter (115 V, 50/60 Hz)            | 1001032 |    |

### **BASIC PRINCIPLES**

The rotation of a rigid body about a fixed axis can be described in a way that is analogous to a one-dimensional translational motion. The distance s is replaced by the angle of rotation  $\phi$ , the linear velocity v by the angular velocity  $\omega$ , the acceleration a by the angular acceleration  $\alpha$ , the accelerating force F by the torque M acting on the rigid body, and the inertial mass m by the rigid body's moment of inertia J about the axis of rotation.

In analogy to Newton's law of motion for translational motion, the relationship between the torque (turning moment) M that is applied to a rigid body with a moment of inertia J, supported so that it can rotate, and the angular acceleration  $\alpha$  is:

(1)  $M = J \cdot \alpha$ 

If the applied torque is constant, the body undergoes a rotational motion with a constant rate of angular acceleration.

In the experiment, this behaviour is investigated by means of a rotating system that rests on an air-bearing and therefore has very little friction. The motion is started at the time  $t_0 = 0$  with zero initial angular velocity  $\omega = 0$ , and in the time *t* it rotates through the angle

(2) 
$$\varphi = \frac{1}{2} \cdot \alpha \cdot t^2$$

The torque *M* results from the weight of an accelerating mass  $m_{\rm M}$  acting at the distance  $r_{\rm M}$  from the axis of rotation of the body, and is therefore:

$$M = r_{\rm M} \cdot m_{\rm M} \cdot g$$

the gravitational acceleration constant.

$$g = 9.81 \frac{\text{m}}{\text{s}^2}$$

If two additional weights of mass  $m_1$  are attached to the horizontal rod of the rotating system at the same fixed distance  $r_1$  from the axis of rotation, the moment of inertia is increased to:

(4)

J<sub>c</sub>: moment of inertia without additional weights.

$$J = J_0 + 2 \cdot m_J \cdot r_J^2$$

A number of weights are provided, both for producing the accelerating force and for increasing the moment of inertia. The distances  $r_{\rm M}$  and  $r_{\rm I}$  can also be varied. Thus, it is possible to investigate how the angular acceleration depends on the torque and the moment of inertia in order to confirm the relationship (1).

## **EVALUATION**

The proportionality of the angle of rotation to the square of the time is demonstrated by measuring the times for the angles of rotation 10°, 40°, 90°. 160° and 250°.

To determine the angular acceleration  $\alpha$  as a function of the variables *M* and *J*, measure the time  $t(90^\circ)$  needed for an angle of rotation of  $90^\circ$ with different values of the variable in both cases. For this special case the angular acceleration is





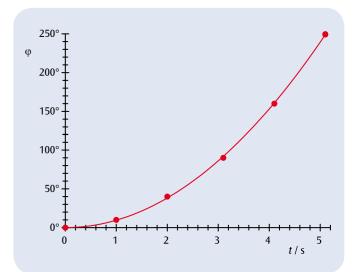


Fig. 1: Angle of rotation as a function of time for a uniformly accelerated rotational motion.

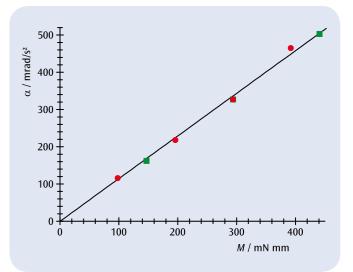


Fig. 2: Angular acceleration  $\alpha$  as a function of the torque *M*.

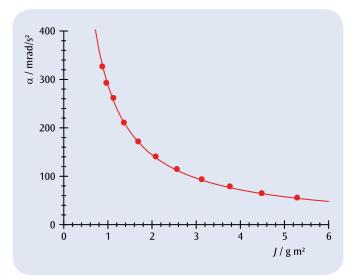


Fig. 3: Angular acceleration  $\alpha$  as a function of the moment of inertia *J*.