ELECTRICITY / ELECTRONICS

UE3080200

BIPOLAR TRANSISTORS

EXPERIMENT PROCEDURE

- Measure the input characteristic, i.e. the base current $I_{\rm R}$ as a function of the base emitter voltage U_{RF}.
- Measure the control characteristic. i.e. the collector current I_c as a function of the base current $I_{\rm B}$ for a fixed collector-emitter voltage U_{CF} .
- Measure the control characteristic, i.e. the collector current I_c as a function of the collector-emitter voltage for a fixed base current I_R.

REQUIRED APPARATUS

Quantity	Description	Number
1	Plug-In Board for Components	1012902
1	Set of 10 Jumpers, P2W19	1012985
1	Resistor 1 kΩ, 2 W, P2W19	1012916
1	Resistor 47 kΩ, 0.5 W, P2W19	1012926
1	Potentiometer 220 Ω, 3 W, P4W50	1012934
1	Potentiometer 1 kΩ, 1 W, P4W50	1012936
1	NPN Transistor, BD 137, P4W50	1012974
1	AC/DC Power Supply 0 – 12 V, 3 A (230 V, 50/60 Hz)	1002776 or
	AC/DC Power Supply 0 – 12 V, 3 A (115 V, 50/60 Hz)	1002775
3	Analogue Multimeter AM50	1003073
1	Set of 15 Experiment Leads, 75 cm 1 mm ²	1002840

BASIC PRINCIPLES

A bipolar transistor is an electronic component composed of three alternating p-doped and n-doped semiconductor layers called the base B, the collector C and the emitter E. The base is between the collector and emitter and is used to control the transistor. In principle a bipolar transistor resembles two diodes facing opposite directions and sharing an anode or cathode. Bipolarity arises from the fact that the two varieties of doping allow for both electrons and holes to contribute to the transport of charge.

Depending on the sequence of the layers, the transistor may either be termed npn or pnp (Fig. 1). Bipolar transistors are operated as quadripoles in three basic circuits, distinguished by the arrangement of the terminals and called common emitter, common collector and common base. The names indicate which of the terminals is common to both the input and the output. Only npn transistors are considered in the following treatment.

There are four operating modes for an npn transistor, depending on whether the base-emitter or basecollector junctions are aligned in a conducting or forward-bias direction (U_{BE} , $U_{BC} > 0$) or a non-conducting or reverse bias ($U_{\rm BF}$, $U_{\rm BC}$ < 0) direction (see Table 1). In forward-bias mode, electrons from the emitter migrate into the base across the transistor's forward-biased base-emitter junction ($U_{\text{RF}} > 0$) while holes from the base move into the emitter. Since the emitter has much higher doping than the

base, more electrons will migrate than holes, which minimises recombination between the two. Because the width of the base is shorter than the diffusion length of the electrons, which count as minority carriers within the base itself, the electrons diffuse through the base into the depletion layer between the base and the collector before drifting further towards the collector itself. This is because the depletion layer only forms a barrier for majority carriers. This results in a transfer current I_{T} from the emitter into the collector, which is the major contributor to the collector current I_c in forward-bias mode. The transistor can therefore be regarded as a voltage controlled current source whereby the I_c at the output can be controlled by the voltage $U_{\rm BE}$ at the input. Electrons which recombine in the base emerge from there in a base current $I_{\rm B}$ which guarantees a constant transfer current I_{T} , thereby ensuring that the transistor remains stable. A small input current $I_{\rm B}$ can therefore control a much greater output current $I_{\rm C}$ ($I_{\rm C} \approx I_{\rm T}$), which gives rise to current amplification.

The response of a bipolar transistor is described by four characteristics, the input characteristic, the control or base characteristic, the output characteristic and the feedback characteristic (see Table 2). This experiment involves measuring, by way of example, input, control and output characteristics for an npn transistor and plotting them as a graph.

Tab. 1: Four operating modes of an npn transistor

UBE	U _{Bc}	Operating mode
> 0	< 0	Normal mode
> 0	> 0	Saturation
< 0	> 0	Inverse mode
< 0	< 0	Off state

Tab. 2: Four characteristics of an npn transistor in normal mode

Name	Dependency	Parameter
Input characteristic	$I_{\rm B}(U_{\rm BE})$	
Control characteristic	$I_{\rm C}(I_{\rm B})$	$U_{\rm CE} = {\rm const.}$
Output characteristic	$I_{\rm C}(U_{\rm CE})$	I _B = const.
Feedback characteristic	$U_{\rm BE}(U_{\rm CE})$	$I_{\rm B} = {\rm const.}$

Fig. 1: Design of an npn transistor in principle, including accompanying circuit symbol plus indications of voltage and current

EVALUATION

The threshold voltage U_{Th} can be found from the input characteristic and the gain can be found from the control characteristic

$$B = \frac{\Delta I_C}{\Delta I_B}$$

The power dissipation can be found from the output characteristic $P=U_{CE} \cdot I_C$.

Fig. 4: Output characteristic for $I_{\rm P} = 4.2$ mA