3B SCIENTIFIC® PHYSICS

Light Sensor 1000562

Instruction Sheet

1. Safety instructions

The light sensor must only be used for educational purposes!

• The light sensor is not suitable for safetyrelated applications!

2. Description

Sensor box incorporating photodiode with optical filter for the measurement of light intensity (illuminance), especially in the visible region.

Push-button selection of measurement ranges 600 lx, 6000 lx or 150000 lx, with visual indication of range.

8 mm light tube for excluding unwanted light from sides.

The sensor box and range setting are recognised automatically by the 3B NET log^{TM} .

3. Equipment supplied

- 1 Sensor box
- 1 Stand with screw thread, 120 mm
- 1 miniDIN 8-pin connecting cable, 600 mm long
- 1 Instruction sheet

4. Technical data

Measurement ranges and resolution	0 to 600 lx / 0.8 lx 0 to 6000 lx / 8 lx 0 to 150000 lx / 200 lx
Sensor type:	Silicon photodiode with low dark current
Sensitivity:	Typically 0.65 µA at 100 lx
Non-linearity:	Max. ±1 % of the total measurement range
Bandwidth:	Typically 10 kHz

5. Operation

- Place the sensor box close to the experiment.
- Read off the light intensity value on the display of the 3B NET*log*[™].
- If the light intensity exceeds the measurement range, switch to the next higher range.

6. Experimental applications

Investigation of the inverse square law for a point light source

Properties of polarising filters

Demonstration of the flickering effect of alternating current for fluorescent lamps

Measurement of solar energy

Studies of reflection

Measurements of illuminance at work-stations and personal areas

Relationship between light intensity and growth of plants

7. Sample experiment

Investigation of the inverse square law for a point light source

Apparatus needed:

1 3B NET <i>log</i> ™ @ 230 V	1000540
or	
1 3B NET <i>log</i> ™ @ 115 V	1000539
1 3B NET <i>lab</i> ™	1000544
1 Light sensor	1000562
1 Experimental lamp, halogen	1003038
1 Transformer @ 230 V	1000593
or	
1 Transformer @ 115 V	1006780
1 Barrel foot	1001045
1 Vertical ruler, 1 m	1000743
2 Universal clamps	1002830

- Set up the experiment as shown in Fig. 1.
- On the 3B NET*lab*[™], open the application program (template) for the experiment with the light sensor.
- Lay the ruler horizontally, and fix the experimental lamp at the 15 cm mark using one of the universal clamps.
- Define this point as distance zero, 0.
- Mount the light sensor on the ruler using the other universal clamp.
- Connect the electric cables to the experimental set-up and switch on.
- Start the template program, select "manual input", and measure the light intensity at the first point, a distance of 5 cm in front of the experimental lamp.
- Increase the distance in steps of 5 cm up to the 70 cm mark (a distance of 55 cm from the experimental lamp), and record

the corresponding light intensities in the 3B NET/ ab^{TM} (Fig. 2).

 Generate the data curve using the "Fit" function.



Fig. 1 Investigation of the inverse square law for a point light source

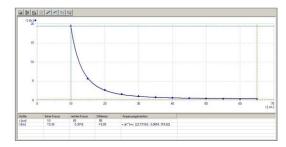


Fig. 2 Plot of the data points from the inverse square law experiment on the monitor screen of the 3B NET/ab[™]