Thermodynamics

Thermal expansion

The water anomaly

DETERMINE THE TEMPERATURE WHERE WATER REACHES ITS MAXIMUM DENSITY

- Measure the thermal expansion of water over a temperature range between 0°C and 15°C.
- Demonstrate the thermal anomaly.
- Determine the temperature when the density is at a maximum.

UE2010301

04/16 ALF

BASIC PRINCIPLES

Water is unlike most other materials in that up to a temperature of about 4°C it initially contracts and only starts expanding at higher temperatures. Since the density is inversely related to the volume of a mass, water thus reaches its maximum density at about 4°C.

The experiment involves measuring the expansion of water in a vessel with a riser tube. The height h to which water rises up the tube is measured as a function of the water temperature ϑ . Neglecting the fact that the glass vessel also expands at higher temperatures, the total volume of the water in the vessel and in the tube is given by:

$$V(9) = V_0 + \pi \cdot \frac{d^2}{4} \cdot h(9) \tag{1}$$

d: Internal diameter of tube, V_0 : Volume of vessel

If the expansion of the vessel is taken into account, equation (1) becomes

$$V(9) = V_0 (1 + 3 \cdot \alpha \cdot 9) + \pi \cdot \frac{d^2}{4} \cdot h(9)$$
⁽²⁾

 α = 3.3 10⁻⁶ K⁻¹: linear expansion coefficient of glass

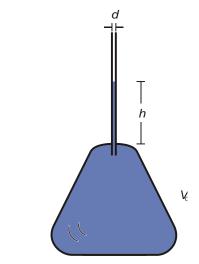


Fig. 1: Vessel with riser tube for measuring the thermal expansion of water

Fig. 2: Experiment set-up for determining the temperature of the maximum density of water

LIST OF APPARATUS

1 Apparatus for demonstrating the anomaly of water	nstrating the 1002889 (U14318)		
1 Magnetic stirrer	1002808 (U11876)		
1 Digital thermometer, single char (U11817)	nnel 1002793		
1 K-type immersion sensor or	1002804 (U11854)		
1 Thermometer	1003013 (U16115)		
1 Plastic funnel, d= 50 mm 1 Silicon tubing, 1 m, 6 mm	1003568 (U8634700) 1002622 (U10146)		
1 Stand rod, 470 mm 1 Clamp with jaw 1 Stand base 150 mm	1002934 (U15002) 1002829 (U13253) 1002835 (U13270)		
1 Plastic trough	4000036 (T52006)		

Distilled water, crushed ice, table salt

SET-UP

- First place the stirrers into the apparatus for demonstrating the water anomaly.
- Mount the riser tube onto the glass vessel and screw it on tight.
- Connect the immersion sensor to the digital thermometer, screw the GL screw cap with the small bore onto the threaded tube at the side and insert the immersion sensor.
- As an alternative, the experiment can be conducted by using a standard thermometer. To use such an instrument, slide the GL screw cap with the large bore over the thermometer and attach it to the threaded tube at the side.
- Connect the silicon tube to the hose clip and then to the funnel.
- Set up the stand rod in the stand base. Attach the jaw clamp to the stand rod.
- Suspend the funnel from the clamp.
- In order to fill the glass vessel, open the tap and let distilled water into the funnel till the water level has reached approximately the middle of the riser tube.
- Remove any air bubbles by gently shaking the glass vessel.
- Close the tap, remove the tubing and pour the excess water back into its bottle.

EXPERIMENT PROCEDURE

- Set up the experiment as in Fig. 2.
- Prepare a mixture of crushed ice and table salt, and fill the plastic tub with this mixture.
- Place the tub on the magnetic stirrer.
- Place the apparatus in the trough as illustrated in Fig. 2.
- Use a marker pen to mark the water level in the riser pipe. Note the water level and the temperature.
- Switch on the magnetic stirrer and set it to medium speed.
- Read off the water level *h* in the riser tube and plot it as a function of temperature 9 on a graph.
- As soon as the temperature falls below 0.5°C, remove the experiment apparatus from the trough in order to prevent the water from freezing.

SAMPLE MEASUREMENTS

Table 1: Level of water h in riser tube measured as a function of temperature ϑ

(°C)	<i>h</i> (mm)	9 (°C)	<i>h</i> (mm)
0.5	32.5	8.0	22.0
1.0	23.0	8.5	27.3
1.5	16.5	9.0	32.5
2.0	10.3	9.5	36.0
2.5	7.3	10.0	42.2
3.0	5.3	10.5	47.3
3.5	3.7	11.0	54.0
4.0	3.3	11.5	62.0
4.5	4.3	12.0	67.2
5.0	6.0	12.5	76.5
5.5	7.5	13.0	86.5
6.0	10.0	13.5	94.0
6.5	12.6	14.0	104.5
7.0	14.8	14.5	116.5
7.5	19.3	15.0	125.3

EVALUATION

Fig. 3 shows the curve resulting from the values in Table 1. The water level *h* in the riser pipe at 0°C is established by extrapolation. With this data, we get $h(0^{\circ}C) = 44.7$ mm. Using Equation (3), we can now calculate the relative density of water.

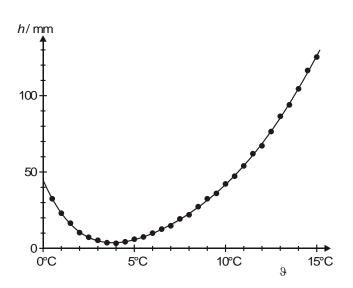


Fig. 3: Water level h as a function of temperature 9

Water density ρ is derived from equation (1) and (2) as follows:

$$\frac{\rho(\vartheta)}{\rho(0^{\circ}C)} = \frac{V_0 + \pi \cdot \frac{d^2}{4} \cdot h(0^{\circ}C)}{V_0 (1 + 3 \cdot \alpha \cdot \vartheta) + \pi \cdot \frac{d^2}{4} \cdot h(\vartheta)}$$
(3)

The maximum value of this expression occurs when $\vartheta = 4^{\circ}C$ (see Fig. 4).

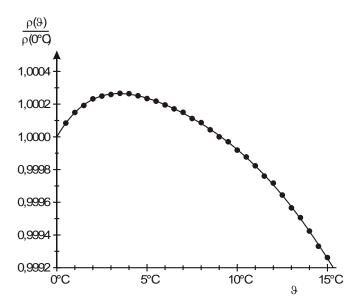


Fig. 4: Relative density of water as a function of temperature ϑ

RESULTS

The volume of water decreases as the temperature rises from 0°C to 4°C. The volume of water only increases at temperatures above 4°C.

Water attains its maximum density at approx. 4°C,